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On the origin of biquadratic exchange in spin 1 chains
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Abstract. One-dimensional spin 1 systems may have a rich phase diagram including Haldane gap and
dimerized phases if the usually very small biquadratic exchange becomes significant. We show that this
unlikely condition may be fulfilled in electron systems with quasi-degenerate orbitals. This mechanism may
have been experimentally realized in the spin 1 chain LiVGe2O6. The implications for the exploration of
the physics and quantum chemistry of spin 1 chains are discussed.

PACS. 75.30.Et Exchange and superexchange interactions – 75.10.Jm Quantized spin models –
75.50.Ee Antiferromagnetics

There has been a lot of activity recently on the physics
of one-dimensional (1D) spin 1 systems, especially after
the prediction by Haldane that the 1D Heisenberg model
has a spin gap for integer spins [1]. That prediction has
been confirmed since then by the observation of a gap
in many spin 1 chains [2]. There has also been a lot of
progress in the study of the most general Hamiltonian de-
scribing an isotropic coupling between neighboring spins 1,
namely [3]

H =
∑
〈ij〉

Hij ,

Hij = J1Si · Sj + J2(Si · Sj)2, (1)

where the sum 〈ij〉 is over nearest–neighbor pairs. The
phase diagram of this model is extremely rich [4]. It
is most easily described using the parametrization J1 =
J cos θ, J2 = J sin θ. As illustrated in Figure 1, the
system has two gapped phases: The Haldane phase for
−π/4 < θ < π/4 and a dimerized phase for −3π/4 < θ <
−π/4. The two phases are connected by a critical point
at θ = −π/4 for which the model is exactly solvable and
the spectrum is gapless. In addition, there is a Lifshitz
point and a disordered point in the Haldane phase, as
well as a Valence Bond Solid point [3], and the properties
for π/4 < θ < π/2 and θ ' −π/4 are not totally agreed
upon yet.

Hopelessly, it has not been possible until very recently
to explore this phase diagram experimentally due to the
lack of systems with a sizable biquadratic exchange, which
is conveniently measured by the ratio−β = J2/J1 = tan θ.
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Fig. 1. Phase diagram of the general spin 1 model of equa-
tion (1) after reference [4].

It has been generally assumed that β is always small so
that the system is always in the Haldane gap phase. The
experiments on many spin 1 chain compounds have indeed
supported this view until a very recent experiment on the
1D, spin 1 vanadium oxide LiVGe2O6. In that experiment,
an abrupt drop in magnetic susceptibility typical of a spin-
Peierls transition has been observed at a temperature of
22 K [5]. This property is consistent with a gapless spec-
trum above this temperature, and it has been argued that
this behavior is most likely due to the presence of a sig-
nificant biquadratic exchange interaction [5].

Although biquadratic or higher-order spin exchange in-
teractions have been discussed in the past and shown to
induce anomalous magnetic properties in spin S ≥ 1 sys-
tems, they are usually small [6,7]. It is therefore of inter-
est to study the underlying mechanism for predominant
biquadratic interaction.
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Fig. 2. Typical second–order exchange processes leading to: a)
Antiferromagnetic bilinear exchange; b) Ferromagnetic bilinear
exchange.

In this paper we propose a new microscopic mechanism
leading to a significant biquadratic interaction in spin 1
systems. We use a microscopic model to derive the inter-
action couplings J1 and J2 in equation (1) based on a per-
turbation theory, which is compared with exact numerical
calculations. The key in our model is to include a third
atomic orbital for an electron with slightly higher energy
than the two singly occupied lowest orbital states, i.e. to
consider the situation where we have a quasi-degeneracy
of the orbitals on one site. The virtual electron transi-
tion via the third orbital level favors ferromagnetic spin
interaction, which may compensate largely the antiferro-
magnetic superexchange interaction, leading to the pre-
dominance of the biquadratic interaction with β > 1. We
believe that this mechanism may be relevant to LiVGe2O6.
In that case the three orbitals come from the t2g orbitals
of the vanadium ions, and the degeneracy is lifted due to
a small distortion of the octahedra around the vanadium
atoms [5]. More generally, we believe that the exchange
Hamiltonian is likely to have higher order contributions
whenever the degeneracy between the last occupied and
first empty orbitals is only slightly lifted. This situation
could be realized in some other transition metal oxides.

Let us consider a lattice of atoms with two outer elec-
trons per atom. The atomic orbitals of the lowest energy
level is two-fold degenerate, labelled by indices 1 and 2.
There is a nearby level of orbital 3, whose energy is higher
by an amount of ∆. We focus on the electron interactions
at the same atom, and denote by U (U ′ < U) the direct
Coulomb repulsion between two electrons in the same (dif-
ferent) orbitals, and by JH > 0 the exchange interaction.
The exchange interaction favors a total spin 1 state for
two electrons on each atom, where orbitals 1 and 2 are
both singly occupied with parallel spins, and orbital 3 is
empty. This is in accordance with Hund’s rule. The ef-
fective spin-spin coupling arises when the electron has a
virtual transition to the neighboring atoms. Let tlm be the
electron hopping integral from orbital l at site i to orbital
m at site j with the electron spin conserved. If the hop-
ping integral is small compared with U ′, JH and ∆, only
virtual transitions are possible, and their net effect is to
induce an intersite spin-spin coupling.

The spin Hamiltonian Hij is uniquely determined by
the total spin of two neighboring sites i and j. Let ES the
energy of the two-site system with total spin S, with S =
0, 1 or 2. Then J1 = 1

2 (E2 − E1), and J2 = E0
3 + E2

6 −
E1
2 . Treating the hopping integrals as small parameters,

Fig. 3. Typical fourth–order process leading to a biquadratic
interaction.

the energy ES can be calculated within perturbation the-
ory. To illustrate the essential physics, we consider the
simple case where t11 = t12 = t13 = 0, and t22 = t33.
To second order in the hopping integrals, and in units of
t222/U

′, the spin couplings are given by [8]

J
(2)
1 =

1
2

(a2 + a3)− 2
3
α2(a1 − a2),

J
(2)
2 = 0, (2)

where α = t23/t22, and the a′s are related to the Hund’s
couplings: a1 = (1 − jH)−1, a2 = (1 + 2jH)−1, a3 =
(1 + 4jH)−1, with jH = JH/U

′. From equation (2), we
see that the biquadratic interaction vanishes in the sec-
ond order of perturbation. This explains the smallness
of the biquadratic coupling in most systems. The first
term in J

(2)
1 arises from hopping to an occupied orbital

of the neighbouring site (see Fig. 2a) and corresponds to
superexchange interaction. It is positive and favors antifer-
romagnetic alignment of the two spins. The second term
arises from the virtual transition via the orbital state 3
(see Fig. 2b). Since a1 > a2, the contribution to J1 is neg-
ative and it favors ferromagnetic alignment of the spins.
Typical virtual transitions for the first and the second
terms in J1 are illustrated in Figure 2. These two exchange
mechanisms may compensate each other, leading to a very
small net value of J1. In this situation, it is necessary to
extend the perturbation to include the contributions from
the fourth order terms. Since ∆ � U ′, JH , the most im-
portant contribution arises from processes involving a vir-
tual state of spin 1 on both sites and with one electron
in the excited state of orbital 3. Such a process gives an
energy correction to the second order results by a ratio
of order of δ = t2/U ′∆. In Figure 3 we show a typical
example of such processes. All the other fourth order con-
tributions are smaller by a factor of ∆/JH or ∆/U ′, and
will be neglected in the present consideration. Summing
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Fig. 4. Exact diagonalization results for a two-site cluster. a)
Lowest energy levels in units of eV. Note the large gap between
the three lowest levels (solid line: S = 0; long-dashed line:
S = 1; short-dashed line: S = 2) and the next one (dashed-
dotted line). b) Relative biquadratic interaction β as a function
of t23/t22 for typical parameters (t22 = 0.3 eV, ∆ = 0.3 eV,
U = 6 eV, JH = U/5). Solid line: exact result; dashed line:
perturbation result.

over these fourth order terms, we find

J
(4)
1 = δ[b22 − b21 + (b3 +

b1
3

)2],

J
(4)
2 = − δ

2
[b22 + (b3 −

2
3
b1)2], (3)

where b1 = α2a1, b2 = α(a2 + a3), and b3 = (a2− a3)/2−
α2a2/3. The correction to J1 is simply an energy shift,
which modifies slightly the location of the transition be-
tween ferromagnetic and antiferromagnetic bilinear inter-
action. The biquadratic interaction first appears in the
fourth order in perturbation theory. While the ratio β is
usually small, of the order of δ, it can be significant if the
two contributions in the second order balance out and if
∆ is relatively small. From equation (3), we also note that
J2 < 0, which suggests such a system is always in the lower
half plane of the phase diagram in Figure 1. This also im-
plies β > 0 if J1 > 0, and β < 0 if J1 < 0. In Figure 4b,
we plot the value of β as a function of α for given ∆ and
JH/U

′. At α < 0.5, β is vanishingly small. As α increases,
β increases sharply, and the divergent point corresponds
to the transition from antiferromagnetic to ferromagnetic
bilinear interaction.

As stated above, the spin couplings are related to the
energy levels of the two spin 1 system as a function of the
total spin. These energies can be numerically calculated
exactly. For a two-site system with four electrons and three
orbitals at each site, we have calculated exactly the 495 en-
ergy levels for various parameters. As long as ∆ is not too
small as compared to the largest hopping integral, the low-
energy part of the spectrum consists of three levels with
total spin S = 0, S = 1 and S = 2 respectively (Fig. 4a).
So the low energy effective Hamiltonian is indeed a spin 1
model. From the lowest energies ES for total spin S = 0, 1
and 2, we have extracted J1 and J2. Our numerical results
are in good agreement with the perturbation theory. In
particular, we find a transition from antiferromagnetic to
ferromagnetic J1 as a function of α = t23/t22, and a sharp
increase in β in the same region. This transition corre-
sponds to the crossings in Figure 4a. The exact numerical
results for β as a function of α for typical parameters are
also plotted in Figure 4b. Except for the precise value of
α for which β diverges, the essential features found in the
exact numerical calculations are the same as in the pertur-
bation theory. Let us note that the numerical results do
not depend qualitatively on the details of the parameters
as long as the fundamental processes are present: There is
always a value of t23/t22 around 1 at which β diverges. So
although the simplified model presented here in order to
have compact expressions for the fourth order perturba-
tion results (t11 = t12 = t13 = 0, t33 = t22) is not exactly
realized in LiVGe2O6, we have checked numerically that
the appropriate extension gives the same behaviour.

The relative value of the biquadratic interaction β de-
pends sensitively on the ratio of the hopping integrals, but
not on their magnitude. Application of a pressure on the
system, if it is uniformly added, may not change the ratio
of these hopping integrals, hence the biquadratic inter-
action sensitively. A uniaxial pressure, on the other hand,
may change the hopping integrals in different proportions,
and could dramatically affect the magnetic properties of
the system. This possibility would be worth investigating
in the case of LiVGe2O6.

Finally, let us put these results in perspective. Al-
though this mechanism would apply in any dimension,
there is something very special about 1D. In higher di-
mension, fourth–order perturbation theory produces other
types of four-spin interactions involving spins at four dif-
ferent sites. However, in 1D these processes do not appear
as long as the hopping to further neighbours can be ne-
glected, which usually is the case. So this mechanism is
somehow specific to 1D. This might be the reason why
it was overlooked in early attempts at producing strong
biquadratic interactions because they were done before
Haldane’s conjecture and were more concerned with 3D
magnets.

This mechanism is also somehow related to the prob-
lem of orbital degeneracy. It is well known that orbital
degeneracy leads to a Hamiltonian which is not purely
Heisenberg, but involves a pseudo-spin for the orbital de-
grees of freedom [9]. For spin 1/2 systems, for which most
of the work has been done, the bilinear interaction is
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the only candidate – higher order terms do not appear
because they can be rewritten in terms of the bilinear in-
teraction – and the situation is a clear cut: Either the
orbitals do not play a role, and the Hamiltonian is purely
Heisenberg, or they do, and the Hamiltonian is a spin–
orbital model. For spin 1 systems, we showed that, on go-
ing from a Heisenberg to a spin–orbital model by pulling
down an empty orbital, there is an intermediate region
where the Hamiltonian is still a pure spin Hamiltonian,
but with a more general interaction than just bilinear due
to a non-trivial level crossing (Fig. 4a). This simple idea
should be useful in other contexts as well in looking for
general spin Hamiltonians. In that respect, we hope that
the present results will encourage quantum chemists to
look more closely at exchange in situations where orbitals
are quasi-degenerate. Quantum chemistry has proven to
be able to reproduce very accurately on the basis of
ab initio calculations the values of the exchange integrals
of several systems. It should thus be possible along the
same lines to specify more precisely the conditions under
which the mechanism proposed in this paper will apply.

In conclusion, we have provided a simple but efficient
mechanism to produce significant biquadratic interactions
in spin 1 chains. It is our hope that these ideas will ulti-
mately lead to an experimental investigation of the fasci-
nating phase diagram of the general spin 1 model in one
dimension.

Note

After completion of this project, we became aware of a pa-
per by Bhatt and Yang (R.N. Bhatt and K. Yang, J. Appl.
Phys. 83, 7231 (1998)) who considered a similar problem
in the context of random antiferromagnetic spin chains.

Their model is slightly different from ours (they consider
the case of N degenerate orbitals with a simplified interac-
tion), and they restrict themselves to a perturbation cal-
culation, but our results are qualitatively consistent with
theirs.

We acknowledge useful discussions with T. Jolicoeur, K. Le
Hur and O. Golinelli. This work was supported in part by
DOE Grant No. DE/FG03-98ER45687.
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